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Robust symmetric patterns in the Faraday experiment
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Symmetric patterns were recently obtained in the famous Faraday experiment by using a special liquid. A
model is developed to explain the robustness of the observed patterns. A dissipation mechanism is introduced
phenomenologically and shown to be responsible for the stabilization of patterns with several symmetries. The
resulting system of nonlinear equations resembles the well-known Turing equations used to study pattern
formation in biological systems.@S1063-651X~97!07810-0#

PACS number~s!: 47.35.1i, 47.54.1r, 47.20.Ky
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I. INTRODUCTION

Oscillatory phenomena in nature usually produce spa
or temporal patterns that can be understood theoreticall
the framework of parametric resonances. An example of
is the famous Faraday experiment in which surface wave
a liquid are parametrically amplified by forcing a vertic
oscillatory motion of the container. The nature of the p
terns obtained depends very much on the physical prope
of the liquid used, for example, Faraday@1# used water and
observed patterns with twofold and fourfold symmetries. R
cently, by using highly dissipative systems, patterns with
tagonal@2#, dodecagonal@3#, and pentagonal@4,5# symme-
tries have been obtained.

The theoretical understanding of this phenomenon w
first tackled by Rayleigh@6#, who observed that the resona
frequency was different from the frequency of the oscillat
The basic theoretical equations of motion were put forth
Benjamin and Ursell@7#, who showed that this hydrody
namic system obeys Mathieu’s equation. Extensions of
theory to dissipative viscous fluids have been made rece
@8–10#.

The solutions of Mathieu’s equation in the amplitud
frequency space either diverge or decay exponentially e
when linear dissipative terms are included. One way of s
bilizing stationary patterns is to consider a nonlinear dissi
tion mechanism, as we shall show below.

We have repeated the experiments by Torreset al. @4,5#
using the same special liquid, which has the property of
bilizing fivefold patterns very easily when the height of t
fluid is very small compared to the horizontal dimensio
and the frequency of the forcing oscillation is set to 35 H
We also obtained practically anyn-fold symmetric patterns
Some preliminary results on the fivefold patterns have b
published recently@11#.

We have devised a model for this problem, in which w
propose a dissipation mechanism that arises from the in
action of the horizontal component of the velocity field at t
bottom of the container with the vertical component. O
obtains a set of nonlinear second-order partial differen
equations that numerically produces stable patterns with
the observed symmetries. Torres@12# pointed out that the
561063-651X/97/56~4!/4222~9!/$10.00
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sequence of nonlinear bifurcations in the fivefold experim
tal patterns resembles the evolutionary sequence of sea
chins. It is suggestive that our equation for the Faraday
stability can be written as a set of Turing equations, wid
used in morphogenesis and pattern formation in biolog
problems@13#.

In what follows we describe the experiment and show
sequence of patterns obtained by varying the frequency
amplitude. Then we derive the equations for the model a
solve them numerically. We also compare several theoret
patterns obtained with their experimental counterparts.

II. EXPERIMENT

Figure 1 is a sketch of the experimental setup. The exp
ments described in Refs.@4,5# were reproduced under th
same conditions, using fluorinert FC-75@14# with a 10-cm
Petri dish and pouring liquid in it to have a perfectly ev
layer of width h052 mm. The vertical oscillations of the
dish were produced with a Bru¨el–Kjaer 4291 vibrator fed by
a high-precision synthesizer that enabled us to change
frequencyv and amplitudeA of the sinusoidal oscillations in
a continuous way. The snapshots of the liquid were produ
by a video camera attached to the upper part of the setup
using a diffusive screen to enhance the contrast produce
a fiber optics lamp underneath. The amplitude of oscillatio
has to be increased slowly to produce the instability. T
happens when the amplitude is between 40 and 55mm. If the

FIG. 1. Experimental setup of the Faraday experiment.
4222 © 1997 The American Physical Society



56 4223ROBUST SYMMETRIC PATTERNS IN THE FARADAY . . .
FIG. 2. ~a! Fivefold pattern obtained with a frequencyn58.7 Hz. ~b! Pattern obtained whenn535 Hz, andA555 mm. ~c! Image
obtained atn535 Hz andA565 mm, averaged over a time of 1 sec~taken from Ref.@4#!. ~d! Chaotic pattern obtained from~b! when the
amplitude exceeds 65mm.
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amplitude is increased further a chaotic labyrinthine patt
is observed.

In Fig. 2 we show a sequence of experimental patte
with fivefold symmetry, obtained at different points o
(A,v) space. As pointed out by Torres@12#, this sequence o
patterns strikingly resembles the shapes of sea urchin
different geological times; for instance, Fig. 2~a! corresponds
to the pattern of the oldest fossils of sea urchins, Fig. 2~b! is
very similar to theHemicidaris intermedia, who lived about
1503106 years ago, and Fig. 2~c! corresponds to the shap
of present time sea urchins. These patterns were obtaine
carefully tuning up the appropriate frequency, predicted
the theoretical linearized form of the dispersion relation@see
Eq. ~1! below#. Figure 2~d! shows a typical chaotic patter
obtained when the amplitude of oscillation exceeds a crit
value.

Other types of patterns can be obtained by parametric
exciting other frequencies, for instance, in Fig. 3 we sh
experimental patterns with eight selected symmetries. In
n
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y
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e

experiment we were able to find alln-fold patterns from
n52 to n521. Observe that all patterns have a center
symmetry at the midpoint, except the fourfold pattern
which are obtained only when the height of the liquid (h0) is
increased. Whenh0 is very small one is likely to see rolls
with n52.

Observe that these patterns do not correspond to
simple monomodes of the linear regime. These patterns h
not always been observed using other liquids. Therefore,
suggestive that the peculiar physical properties of FC-75
important in providing the dissipation mechanisms that s
bilize patterns with any symmetry. It is worth mentionin
that FC-75 is a fully fluored organic liquid that has a ve
low capillary length ('0.93 mm!, a low kinematic viscosity
g50.831022 cm2/s, a large density (r51.77 g/cm3), and a
high molecular weight (m5420).

Unlike the experiments using a glycerol-water mixtu
@3#, the nonlinear dissipation mechanism cannot be attribu
to a large dynamic viscosity. In the next section we propo
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FIG. 3. Sequence ofn-fold symmetric patterns obtained by increasing the frequency of excitation.~a!–~h! correspond ton53, 4, 6, 8,
11, 13, 14, and 19, respectively.
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56 4225ROBUST SYMMETRIC PATTERNS IN THE FARADAY . . .
another dissipation mechanism that takes into account t
properties in a phenomenological way.

III. THEORETICAL MODEL

Our task is to find the shape of the surfacej(x,y,t) ~see
Fig. 1! for all points (x,y) at any timet. Following numer-
ous former works dealing with the Faraday instability@15,7#,
one obtains Mathieu’s equation for the Fourier compone
of the potential that defines the velocity field (v52“f).
The dispersion relation is

vk
25k tanh~kh0!Fg1

sk2

r G , ~1!

where g is the vertical acceleration ands is the surface
tension. If one systematically neglects terms of order hig
thank4 in the dispersion relation, because in the experim
tal regimekh0!1, one gets an equation similar to the o
derived by Benjamin and Ursell@7#, which in the real space
representation is

]2f

]t2
5gh0S 12

A

h0
sin ~vt ! D¹2f2

s8h0

r
¹4f, ~2!

wheres85s2grh0
2/3 is an effective surface tension coef

cient. For FC-75 this effective surface tension is zero fo
depth of 1.6 mm. Therefore, the experiment is in a regime
which the surface tension term could be neglected. Howe
as we shall see below, the smallness of this term turns ou
be important when comparing our model with a set
reaction-diffusion equations known to produce stable p
terns.

This equation has decaying oscillatory solutions or u
stable unbounded ones, depending on the values of the
quantitiesv andA.

In Fig. 4 the boundaries between the two sorts of so
tions are shown by circles. There are no stable patterns.

One needs to consider a mechanism that dissipates en
at the same rate that is fed into the system to obtain stat
ary patterns. Former theories invoke various sorts of diss
tive nonlinear terms in a phenomenological way, frequen
appropriate to viscous fluids, which are not fully applicab

FIG. 4. Resonance tongues of the modified Mathieu’s equat
Stability regions are bounded by stars and circles. The amplitud
in units ofh0 and the frequency in units of the driving frequencyv.
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here. Therefore, we have to introduce alternative mec
nisms of dissipation. The usual viscous term whenkh!1 is
@16#

g8¹2
]f

]t
, ~3!

where g8 is a constant related to the kinematic viscosi
This term is used in Ref.@3#, and is also obtained in the
treatment of a viscous fluid made by Beyer and Friedrich@8#
in the appropriate limit. Therefore, we shall include this te
in our model~2!, although it is not enough to produce st
tionary patterns.

The fact that the molecular weightm is very large implies
that there are many internal degrees of freedom that coul
used by the liquid to dissipate energy, as it is true in granu
systems. In the case of granular convection@17#, there is a
cross term that couples the horizontal currents with the
locity in the z direction. Therefore, this suggests the incl
sion of a term of the formRvz(2h0)vx , whereR is a con-
stant strength. This coupling can be phenomenologic
modeled by considering the liquid as a group of vertical j
hitting a flat, hard, horizontal surface. The velocity fieldvx
due to each column can be estimated by considering a t
dimensional laminar flow and using conformal mappi
techniques@18#. It is seen that]f/]x52C sin(qf), with C
andq constants that are related to the size of the columns~or
the size of the molecules!. Therefore, we add a term

2CAv cos~vt ! sin ~qf!,

to our model~2!. The final model equation reads

]2f

]t2
5gh0S 12

A

h0
sin~vt ! D¹2f2

s8h0

r
¹4f

2CAvcos~vt !sin~qf!1g8¹2
]f

]t
. ~4!

The stabilization of the parametrically produced patte
is accomplished by the nonlinear sin term. For smallqf the
leading correction is of the formqf@12(qf)2/6#, which is
the usual form that gives a limit cycle. The inclusion of
cubic term to stabilize patterns in the Faraday experim
modeling has been studied by Decent and Craik@19#. On the
other hand, his term produces an equation similar to the p
metric pendulum. To understand this, one could imagin
phenomenology in which a huge molecule traveling dow
ward pushes laterally the other molecules below to make
way through and then the molecules move back when
falling molecule has pass through. This system behaves
parametric pendulum but, of course, these thoughts hav
be tested theoretically in granular systems. Such a study
yond the scope of the present work and is not relevant to
results presented here.

In Fig. 4 we show the stable region for a single-variab
parametric pendulum, which is a special case of the ab
equation. The stable patterns are obtained in the regions
tween the stars and the circles in Fig. 4.
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IV. EXPERIMENTAL AND THEORETICAL PATTERNS

The solutions of the model~4! neglecting the surface ten
sion term, were explored numerically in parameter sp
(A,v) by a simple Euler method, in a discrete square m
of sizes 1003100 or 2003200. The lateral boundary cond
tions (“f•n50, wheren is the unitary vector normal to th
surface! were imposed. The numerical calculation has to
done with care, because the instability and the final pat
depend very much not only on the parameters but also on
initial state.

The best choice for the initial state is to use a linear co
bination of eigenfunctions of the Helmholtz equation, whi
areJm(kmnr /a)eimu, whereJm(kmnr /a) is a Bessel function
of orderm, whose derivative vanishes at the boundary of
vessel of radiusa ~see Fig. 1!. We used a mixture ofJ0 , J3,
andJ5, matching the first or second zero of the derivative
the boundary. In the calculations we used the following fix
parameters:g5h051, g850.2, C51, andq5v/2. In these
units v5k in the linear regime.

The free variableA has to be tried for each case in ord
to find the regime of stable patterns; typically this value
A50.5. The other free variable isv, which gives the sym-
metry of the pattern obtained. Usually, in our units, its va
is very close to twice thek that gives a zero of ordern of the
derivative of the eigenfunctions of desired symmetry. F
instance, to produce a fivefold pattern,v510.519 86/a since
J58(10.519 86)50.

The numerical vessel is not a perfectly circular one; c
sequently, the initial functions are not the eigenfunctions
the square mesh. Therefore, it is necessary to run the H
holtz problem (A5g850) for a while ~about 40 000 time
steps of 0.1! in order to stabilize the stationary state for t
numerical set up. Under these conditions, a pattern of c
centric rings is formed, as in the experiment.

Then the appropriate values ofA andg8 are restored and
after ;4000 times steps the perfectly circular symmetry
the stationary pattern breaks and some bumps appear, ju
it is seen in the experiment. Figure 5 shows the numer
calculation at this stage and its comparison with the exp
ment under the same conditions.

It was observed that once ann-fold pattern had settled
down, it remained unchanged for as many as 100 000 it
tions. Figure 6 shows a stable ten-fold pattern obtained w
a typical calculation and compares it with an experimen
image with the same symmetry. Observe that the appear
of both is very similar, although not identical. This is to b
expected since the experimental image is the result of v
complicated optical phenomena, while the theoretical im
is constructed by assigning a linear scale of grays to
heights of the liquid.

When the amplitudeA is increased beyond a certa
value, in either the experiment or the calculation, some ty
cal labyrinthine patterns are observed. These are show
Fig. 7.

In the experiments, these chaotic patterns retain som
the symmetry of the pattern that originated them, and if
amplitude is diminished slowly, the former symmetric pa
tern is recovered. In this regime of high amplitude so
averaged symmetric and complicated images, which co
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spond to the second instability onset, are obtained@see Fig.
2~c!#.

In Fig. 8 we show a typical calculation to mimic the se
ond instability. In Fig. 8~a! we show the time history of the
central point in the mesh around the time when the sec
instability appears~after ;560 iterations!. The amplitude of
the forcing vibration was set to 3/2 the one that produced
first symmetry breaking, which produces an image like
one shown in Fig. 8~b!. One can notice that the oscillation i
this situation has mainly one Fourier component that co
sponds to the external driving oscillation, although there i
wide band of frequencies around it, as shown in Fig. 8~c!
with a continuous line. This plot was obtained by performi
a fast Fourier transform in the interval 20–560 iterations.
the same figure, the dotted line corresponds to the Fou
transform taken in the interval 560–2000 iterations. Not
that many frequencies are amplified, in particular the o
that correspond to the first and second parametric re
nances, of the formv(k)52v/n. The image produced afte
the second instability is shown in Fig. 8~d!. Observe that the
main symmetries present are threefold and tenfold, jus

FIG. 5. ~a! Image of the shape of the surface in a numeri
calculation shown exactly after the symmetry breaking. The f
quency of excitation was appropriate for stabilizing fivefold p
terns.~b! Photograph of the experimental vessel taken just bef
the pattern shown in Fig. 2~b! was settled.
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56 4227ROBUST SYMMETRIC PATTERNS IN THE FARADAY . . .
the pattern that originated it, but in a rather complicated w
See also the presence of threefold symmetry at the cent
Fig. 2~b!.

A quantitative comparison between the experimental p
terns and the calculated ones can be done by means
Fourier-Bessel analysis. However, there are serious diffi
ties in doing this because the experimental images are
result of a very complicated optical effect that has to
precisely modeled before any attempt to compare ima
that the eye can discern as similar. This study is curre
being carried out.

We noticed by Fourier-Bessel analysis of the calcula
images that at medium ranges ofA the tongues, like the one
shown in Fig. 4, are wider for threefold and sevenfold sy
metries. In the experiments the five-fold patterns are
tremely robust atn535 Hz provided that the fluid height i
exactly set ath052 mm. For slightly lower values threefol

FIG. 6. ~a! Image of the shape of the surface in a numeri
calculation where a stable tenfold pattern is observed.~b! Photo-
graph of the experimental vessel showing a stable tenfold patt
y.
of

t-
f a
l-
he
e
es
ly

d

-
-

symmetry was dominant, and for higher values a square
tern was obtained, as observed in experiments@20#. At ex-
ceedingly high values ofA the fluid develops fingers tha
eventually splash in the experiment, in the simulations a
calized instability appears usually at one edge of the ve
@see the bottom of Fig. 7~a!, where an extremely high con
trast region shows the onset of a localized instability#, in a
fashion similar to the localized instabilities found experime
tally by Lioubashevskiet al. @21#.

V. ANALOGY WITH TURING SYSTEMS

In this section we would like to stress and analyze
point already made by Torres@12#, and illustrated in Fig. 2.
It is remarkable that the five-fold patterns in the Farad
experiment resemble very much the shapes found in the
lutionary development of the shell of sea urchins. Witho
pretending to make any conclusions concerning the part
lar biological or chemical mechanism involved in such
complicated process as the evolution of living creatures,
shall analyze the model~4! to make a connection with the
kind of nonlinear reaction-diffusion equations currently us
to mimic patterns in living organisms.

If one defines

c5ḟ1bf1a¹2f,

where a51
2 (2g86Ag822 4s8h0 /r) and b5gh0@12

(A/h0)sin(vt)]/(2a1g8), one can write the second-orde
equation~4! as the system

ḟ5~c2bf!2a¹2f, ~5!

ċ5@b~c2bf!1C sin~qf!#1~a1g8!¹2c, ~6!

which is a set of Turing equations@22#. For small effective
surface tension one of thediffusion coefficientsis much
smaller than the other, a condition usually met in model
biological patterns from morphogens. Observe that the di
sion coefficients could be complex ifg82,4s8h0 /r. Using
the experimental values for the physical constants in the
periment of Refs.@4,5#, from the equation fora one obtains
real diffusion coefficients ifh0>1.6 mm and complex other
wise. It is remarkable to notice that the liquid height used
the experiments is very close to this critical value, whi
allows one to neglect the surface tension term, but still gi
a real diffusion coefficient.

Obviously, this is not the only way of defining a set
reaction-diffusion equations compatible with our model. T
external driving force could be considered as another che
cal species that oscillates harmonically in time with natu
frequency 2v, in which case one ends up with a set of fo
coupled nonlinear equations.

Turing systems have been widely treated numerically a
the different kinds of patterns obtained can be classifi
roughly as spots or stripes, depending on the point in par
eter space one is interested. These calculations usually
to systems with periodic boundary conditions. We have st
ied different Turing systems in confined regions@23#, where
a richer variety of spatial patterns can be produced if o
modifies the sources at the boundaries. However, the patt

l
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FIG. 7. ~a! Numerical calculation in the situation whenA50.9. Observe the chaotic structure.~b! Photograph of the experimental vess
showing a chaotic pattern.
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are not produced by interference of monomodes imposed
the boundary, but they are truly nonlinear. Patterns in c
fined Turing systems are affected by the shape of the bou
aries mainly by orientating them and creating ‘‘crystalli
defects.’’

The role of the shape of the boundary can be negligible
by
-
d-

n

the Faraday experiment in two cases: Either the dyna
viscosity of the liquid is very large@3,10# or the size of the
cells is small compared to the size of the vessel. The fact
in our model there is a dissipation mechanism different fr
the viscosity term and that it allows one to make a conn
tion with reaction-diffusion systems allows one to assert t
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FIG. 8. ~a! Amplitude of the central point in the mesh (Ac) as a function of time, when it is driven atn537 Hz andA50.75.~b! Image
corresponding to iteration 50.~c! Power spectrum obtained by fast Fourier transforming~a!. The continuous line is obtained from iteratio
20 to 560 and the dotted line is obtained from iteration 560 to 2000.~d! Image corresponding to iteration 1200.
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the patterns observed are reflecting truly nonlinear behav
Binks and van de Water@24# have found a series of increa
ing rotational symmetry patterns using a liquid with very lo
viscosity and surface tension. They show that these patt
are truly nonlinear and that the effects of the boundary
small. In our case the cell size is small compared to
vessel dimensions in almost all the cases. Therefore, we
assert that at least here the boundary is not important. In
case of the large cells of Figs. 2~a! and 3~a!, a Fourier-Besse
analysis shows that there are many frequencies of the
2v/n that are parametrically enhanced and the onset of
instability behaves as a truly nonlinear bifurcation.

Reaction-diffusion equations have been used to mo
symmetry-breaking patterns in other completely differe
systems; for example, Gunaratneet al. @25# have found pat-
terns in cellular flames and used a set of diffusion equati
that are strikingly similar to our Eq.~6! except that the non
r.
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re
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linear coupling is cubic instead of the sin term and the n
variational gradient square terms that produce rotating mo
in their flames are not present in our model.

VI. CONCLUSION

In this paper we have analyzed the fascinating problem
the Faraday instability both experimentally and theoretica
We have found that for certain liquids, in which viscosity
very small and with peculiar physical properties such a
high molecular weight and density, there exists an additio
dissipation mechanism that introduces an important non
ear term in the equations of motion. This mechanism p
duces the stabilization of symmetric patterns. The mo
equation was solved numerically and the patterns produ
were analyzed and compared with experimental images.
agreement seems to be satisfactory to the point that s
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experimental patterns were first predicted by the simulati
and then found in the experiments.

It is remarkable that the model equation can be written
a Turing system with the possibility of having complex d
fusion coefficients. The study of Turing systems with co
plex diffusion coefficients in confined regions is curren
being carried out.

There is still much to be learned about this system, a
the quantitative analysis of the nonlinear phenomena is
ev
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missing. This shall be the matter of a future work.
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