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Robust symmetric patterns in the Faraday experiment
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Symmetric patterns were recently obtained in the famous Faraday experiment by using a special liquid. A
model is developed to explain the robustness of the observed patterns. A dissipation mechanism is introduced
phenomenologically and shown to be responsible for the stabilization of patterns with several symmetries. The
resulting system of nonlinear equations resembles the well-known Turing equations used to study pattern
formation in biological system$S1063-651X%97)07810-(

PACS numbds): 47.35+i, 47.54+r, 47.20.Ky

I. INTRODUCTION sequence of nonlinear bifurcations in the fivefold experimen-
al patterns resembles the evolutionary sequence of sea ur-

hins. It is suggestive that our equation for the Faraday in-

or temporal patterns that can be understood theoretically ?gtability can be written as a set of Turing equations, widely
the framework of parametric resonances. An example of thigiseq in morphogenesis and pattern formation in biological
is the famous Faraday experiment in which surface waves OBroblems[13].

a liquid are parametrically amplified by forcing a vertical = |, what follows we describe the experiment and show the
oscillatory motion of the container. The nature of the pat-sequence of patterns obtained by varying the frequency and
terns obtained depends very much on the physical propertiegmplitude. Then we derive the equations for the model and
of the liquid used, for example, Faradglj used water and  solve them numerically. We also compare several theoretical
observed patterns with twofold and fourfold symmetries. Repatterns obtained with their experimental counterparts.
cently, by using highly dissipative systems, patterns with oc-
tagonal[2], dodecagona]3], and pentagondl4,5] symme-
tries have been obtained.

The theoretical understanding of this phenomenon was Figure 1 is a sketch of the experimental setup. The experi-
first tackled by Rayleigh6], who observed that the resonant ments described in Ref$4,5] were reproduced under the
frequency was different from the frequency of the oscillator.same conditions, using fluorinert FC-754] with a 10-cm
The basic theoretical equations of motion were put forth byPetri dish and pouring liquid in it to have a perfectly even
Benjamin and Ursell7], who showed that this hydrody- layer of widthhy=2 mm. The vertical oscillations of the
namic system obeys Mathieu’s equation. Extensions of thelish were produced with a Bel-Kjaer 4291 vibrator fed by
theory to dissipative viscous fluids have been made recently high-precision synthesizer that enabled us to change the
[8-10. frequencyw and amplitudeA of the sinusoidal oscillations in

The solutions of Mathieu's equation in the amplitude-a continuous way. The snapshots of the liquid were produced
frequency space either diverge or decay exponentially eveby a video camera attached to the upper part of the setup and
when linear dissipative terms are included. One way of stausing a diffusive screen to enhance the contrast produced by
bilizing stationary patterns is to consider a nonlinear dissipaa fiber optics lamp underneath. The amplitude of oscillations
tion mechanism, as we shall show below. has to be increased slowly to produce the instability. This

We have repeated the experiments by Toeeal. [4,5] happens when the amplitude is between 40 ang 55 If the
using the same special liquid, which has the property of sta-
bilizing fivefold patterns very easily when the height of the
fluid is very small compared to the horizontal dimensions, E_»(x» ,t)
and the frequency of the forcing oscillation is set to 35 Hz.

We also obtained practically amyfold symmetric patterns. /\/ /\
Some preliminary results on the fivefold patterns have beer
published recently11]. _f \/ N4 o

We have devised a model for this problem, in which we ho
propose a dissipation mechanism that arises from the inter
action of the horizontal component of the velocity field at the
bottom of the container with the vertical component. One
obtains a set of nonlinear second-order partial differential |-— a —-|
equations that numerically produces stable patterns with all
the observed symmetries. TorrgEk2] pointed out that the FIG. 1. Experimental setup of the Faraday experiment.

Oscillatory phenomena in nature usually produce spati
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FIG. 2. (a) Fivefold pattern obtained with a frequeney=8.7 Hz. (b) Pattern obtained when=35 Hz, andA=55 um. (c) Image
obtained atv=35 Hz andA=65 wm, averaged over a time of 1 séeken from Ref[4]). (d) Chaotic pattern obtained frofb) when the
amplitude exceeds 6am.

amplitude is increased further a chaotic labyrinthine patterexperiment we were able to find afi-fold patterns from
is observed. n=2 to n=21. Observe that all patterns have a center of

In Fig. 2 we show a sequence of experimental patternsymmetry at the midpoint, except the fourfold patterns,
with fivefold symmetry, obtained at different points of which are obtained only when the height of the liquig) is
(A, w) space. As pointed out by Torrgk2], this sequence of increased. Whem, is very small one is likely to see rolls
patterns strikingly resembles the shapes of sea urchins with n=2.
different geological times; for instance, Figapcorresponds Observe that these patterns do not correspond to the
to the pattern of the oldest fossils of sea urchins, Fig) B  simple monomodes of the linear regime. These patterns have
very similar to theHemicidaris intermediawho lived about not always been observed using other liquids. Therefore, it is
150x 10° years ago, and Fig.(&) corresponds to the shape suggestive that the peculiar physical properties of FC-75 are
of present time sea urchins. These patterns were obtained lipportant in providing the dissipation mechanisms that sta-
carefully tuning up the appropriate frequency, predicted bybilize patterns with any symmetry. It is worth mentioning
the theoretical linearized form of the dispersion relafisee  that FC-75 is a fully fluored organic liquid that has a very
Eq. (1) below]. Figure Zd) shows a typical chaotic pattern low capillary length &0.93 mm), a low kinematic viscosity
obtained when the amplitude of oscillation exceeds a criticaly=0.8x 10~ 2 cm?/s, a large density(=1.77 g/cn?), and a
value. high molecular weight £=420).

Other types of patterns can be obtained by parametrically Unlike the experiments using a glycerol-water mixture
exciting other frequencies, for instance, in Fig. 3 we show[3], the nonlinear dissipation mechanism cannot be attributed
experimental patterns with eight selected symmetries. In theo a large dynamic viscosity. In the next section we propose
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3,4,6,8,

FIG. 3. Sequence ai-fold symmetric patterns obtained by increasing the frequency of excitdprh) correspond tm

11, 13, 14, and 19, respectively.
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3 —X - , , here. Therefore, we have to introduce alternative mecha-
° i nisms of dissipation. The usual viscous term whér<1 is
*
16
=~ ©° unstable * [16]
SZ ” x O |
X o *¥ o ’ 2(9¢
A Tt vV g 3
= 1 o limit cycle o
*
51' o ° s & o ¢ where y' is a constant related to the kinematic viscosity.
°o o *;?‘ o This term is used in Refl3], and is also obtained in the
o © decaying treatment of a viscous fluid made by Beyer and Friedi&h
0° . in the appropriate limit. Therefore, we shall include this term

] 2 3 in our model(2), although it is not enough to produce sta-
Frequency tionary patterns.
The fact that the molecular weigft is very large implies
FIG. 4. Resonance tongues of the modified Mathieu’s equationthat there are many internal degrees of freedom that could be
Stability regions are bounded by stars and circles. The amplitude igsed by the liquid to dissipate energy, as it is true in granular
in units ofhy and the frequency in units of the driving frequency systems. In the case of granular convectiai], there is a

o ) . cross term that couples the horizontal currents with the ve-
another dissipation mechanism that takes into account thesggcity in the z direction. Therefore, this suggests the inclu-

properties in a phenomenological way. sion of a term of the fornRv,(—hy)v,, WhereR is a con-
stant strength. This coupling can be phenomenologically
ll. THEORETICAL MODEL modeled by considering the liquid as a group of vertical jets

. ' hitting a flat, hard, horizontal surface. The velocity field
Our task is to find the shape of the surfagfay,t) (see due to each column can be estimated by considering a two-

Fig. 1) for all points (y) at any timet. Following numer- dimensional laminar flow and using conformal mappin
ous former works dealing with the Faraday instabilit, 7], techniqueg18]. It is seen thamﬁ/&x:gc sin@¢), with Cp:p 9
one obtains Mathieu’s equation for the Fourier component%md gonstant.s that are related to the size ofqthé colufans
of the potential that defines the velocity field= —V ¢). the gize of the moleculgsTherefore, we add a term

The dispersion relation is '

wi=k tanh khy)

ok? —CAw cos(wt) sin(qd¢),
g+ T} (o

_ . _ . to our model(2). The final model equation reads
where g is the vertical acceleration and is the surface
tension. If one systematically neglects terms of order higher

2 ’
than k4_ in the dispersion relation, becguse _in _the experimen- ﬂzgh()( 1— ﬁsin(wt))v%— a"ho Vi
tal regimekhy<<1, one gets an equation similar to the one at? ho
derived by Benjamin and Ursdl¥], which in the real space »
representatlon IS —CAwCOS(wt)SIn(qd)) + ,ylv2E. (4)
7o _ h(l A t)V2 7 Mo 2
at2 —9M h—osm (t) ¢ ¢ (2 The stabilization of the parametrically produced patterns

is accomplished by the nonlinear sin term. For smafl the

whereo’ =a—gph§/3 is an effective surface tension coeffi- leading correction is of the form¢[1— (q¢)?/6], which is
cient. For FC-75 this effective surface tension is zero for ahe usual form that gives a limit cycle. The inclusion of a
depth of 1.6 mm. Therefore, the experiment is in a regime ircubic term to stabilize patterns in the Faraday experiment
which the surface tension term could be neglected. Howevemodeling has been studied by Decent and Cra#{. On the
as we shall see below, the smallness of this term turns out tother hand, his term produces an equation similar to the para-
be important when comparing our model with a set ofmetric pendulum. To understand this, one could imagine a
reaction-diffusion equations known to produce stable patphenomenology in which a huge molecule traveling down-
terns. ward pushes laterally the other molecules below to make its

This equation has decaying oscillatory solutions or un-way through and then the molecules move back when the
stable unbounded ones, depending on the values of the twialling molecule has pass through. This system behaves as a
guantitiesw andA. parametric pendulum but, of course, these thoughts have to

In Fig. 4 the boundaries between the two sorts of solube tested theoretically in granular systems. Such a study be-
tions are shown by circles. There are no stable patterns. yond the scope of the present work and is not relevant to the

One needs to consider a mechanism that dissipates energgsults presented here.
at the same rate that is fed into the system to obtain station- In Fig. 4 we show the stable region for a single-variable
ary patterns. Former theories invoke various sorts of dissipgearametric pendulum, which is a special case of the above
tive nonlinear terms in a phenomenological way, frequentlyequation. The stable patterns are obtained in the regions be-
appropriate to viscous fluids, which are not fully applicabletween the stars and the circles in Fig. 4.
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IV. EXPERIMENTAL AND THEORETICAL PATTERNS

The solutions of the modé#) neglecting the surface ten-
sion term, were explored numerically in parameter space
(A, ) by a simple Euler method, in a discrete square mes
of sizes 10X 100 or 200< 200. The lateral boundary condi-
tions (V¢-n=0, wheren is the unitary vector normal to the
surface were imposed. The numerical calculation has to be
done with care, because the instability and the final patter
depend very much not only on the parameters but also on th
initial state.

The best choice for the initial state is to use a linear com-
bination of eigenfunctions of the Helmholtz equation, which
areJ(kmor/a)e™?, whered,(km/a) is a Bessel function
of orderm, whose derivative vanishes at the boundary of the
vessel of radius (see Fig. 1L We used a mixture oy, Js,
andJs, matching the first or second zero of the derivative to
the boundary. In the calculations we used the following fixed
parametersg=hy=1, y'=0.2, C=1, andg= w/2. In these
units w=k in the linear regime.

The free variabléA has to be tried for each case in order
to find the regime of stable patterns; typically this value is
A=0.5. The other free variable is, which gives the sym-
metry of the pattern obtained. Usually, in our units, its value
is very close to twice th& that gives a zero of order of the
derivative of the eigenfunctions of desired symmetry. For
instance, to produce a fivefold pattetn=10.519 864 since
J5(10.519 86)=0.

The numerical vessel is not a perfectly circular one; con-
sequently, the initial functions are not the eigenfunctions of
the square mesh. Therefore, it is necessary to run the Helm
holtz problem A=+y'=0) for a while (about 40 000 time
steps of 0.1in order to stabilize the stationary state for the
numerical set up. Under these conditions, a pattern of con- FIG. 5. (a) Image of the shape of the surface in a numerical
centric rings is formed, as in the experiment. calculation shown exactly after the symmetry breaking. The fre-

Then the appropriate values Afandy’ are restored and 9quency of excitation was appropr_iate for stabilizing fivefold pat-
after ~4000 times steps the perfectly circular symmetry ofterns. (b) Photograph o.f the experimental vessel taken just before
the stationary pattern breaks and some bumps appear, just 9§ Pattern shown in Fig.(8) was settled.
it is seen in the experiment. Figure 5 shows the numerical
calculation at this stage and its comparison with the experispond to the second instability onset, are obtairses Fig.
ment under the same conditions. 2(c)].

It was observed that once anfold pattern had settled In Fig. 8 we show a typical calculation to mimic the sec-
down, it remained unchanged for as many as 100 000 iteraend instability. In Fig. 81 we show the time history of the
tions. Figure 6 shows a stable ten-fold pattern obtained witleentral point in the mesh around the time when the second
a typical calculation and compares it with an experimentalnstability appearsafter ~560 iterations The amplitude of
image with the same symmetry. Observe that the appearantie forcing vibration was set to 3/2 the one that produced the
of both is very similar, although not identical. This is to be first symmetry breaking, which produces an image like the
expected since the experimental image is the result of vergne shown in Fig. @). One can notice that the oscillation in
complicated optical phenomena, while the theoretical imagéhis situation has mainly one Fourier component that corre-
is constructed by assigning a linear scale of grays to theponds to the external driving oscillation, although there is a
heights of the liquid. wide band of frequencies around it, as shown in Fig) 8

When the amplitudeA is increased beyond a certain with a continuous line. This plot was obtained by performing
value, in either the experiment or the calculation, some typia fast Fourier transform in the interval 20—560 iterations. In
cal labyrinthine patterns are observed. These are shown ifie same figure, the dotted line corresponds to the Fourier
Fig. 7. transform taken in the interval 560—2000 iterations. Notice

In the experiments, these chaotic patterns retain some #hat many frequencies are amplified, in particular the ones
the symmetry of the pattern that originated them, and if théhat correspond to the first and second parametric reso-
amplitude is diminished slowly, the former symmetric pat-nances, of the fornm(k)=2w/n. The image produced after
tern is recovered. In this regime of high amplitude somethe second instability is shown in Fig(d. Observe that the
averaged symmetric and complicated images, which corremain symmetries present are threefold and tenfold, just as
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symmetry was dominant, and for higher values a square pat-
tern was obtained, as observed in experim¢a@. At ex-
ceedingly high values oA the fluid develops fingers that
eventually splash in the experiment, in the simulations a lo-
calized instability appears usually at one edge of the vessel
[see the bottom of Fig.(Z), where an extremely high con-
trast region shows the onset of a localized instaljjliily a
fashion similar to the localized instabilities found experimen-
tally by Lioubashevsket al. [21].

V. ANALOGY WITH TURING SYSTEMS

In this section we would like to stress and analyze the
point already made by Torrd42], and illustrated in Fig. 2.
It is remarkable that the five-fold patterns in the Faraday
experiment resemble very much the shapes found in the evo-
lutionary development of the shell of sea urchins. Without
pretending to make any conclusions concerning the particu-
lar biological or chemical mechanism involved in such a
complicated process as the evolution of living creatures, we
shall analyze the modéH) to make a connection with the
kind of nonlinear reaction-diffusion equations currently used
to mimic patterns in living organisms.

If one defines

Y=o+ Bp+aV?e,
where a=3(—7y'+\Jy'?—40'hylp) and B=ghy[1—

(Alhg)sin(@t)l/(2a+y'), one can write the second-order
equation(4) as the system

b= (y—Bp)—aV3¢p, (5)
y=[B(p—Bd)+C sinqe) ]+ (a+y V3,  (6)

which is a set of Turing equatiori22]. For small effective
surface tension one of thdiffusion coefficientds much
smaller than the other, a condition usually met in modeling
biological patterns from morphogens. Observe that the diffu-
) __sion coefficients could be complex jf2<4¢"hy/p. Using

FIG. 6. (a) Image of the shape of the surface in a numericaly, oy nerimental values for the physical constants in the ex-
calcﬂat;o; where a Statblle tenfolld hpatt_ern IS ?t:)sl,er;(b)ﬁgoto;t periment of Refs[4,5], from the equation forr one obtains
graph ot the experimental Vessel snowing a stable tentold Patieq o) diffusion coefficients ifg=1.6 mm and complex other-

wise. It is remarkable to notice that the liquid height used in
the pattern that originated it, but in a rather complicated waythe experiments is very close to this critical value, which
See also the presence of threefold symmetry at the center aflows one to neglect the surface tension term, but still gives
Fig. 2(b). a real diffusion coefficient.

A gquantitative comparison between the experimental pat- Obviously, this is not the only way of defining a set of
terns and the calculated ones can be done by means ofreaction-diffusion equations compatible with our model. The
Fourier-Bessel analysis. However, there are serious difficulexternal driving force could be considered as another chemi-
ties in doing this because the experimental images are theal species that oscillates harmonically in time with natural
result of a very complicated optical effect that has to befrequency 2v, in which case one ends up with a set of four
precisely modeled before any attempt to compare imagesoupled nonlinear equations.
that the eye can discern as similar. This study is currently Turing systems have been widely treated numerically and
being carried out. the different kinds of patterns obtained can be classified

We noticed by Fourier-Bessel analysis of the calculatedoughly as spots or stripes, depending on the point in param-
images that at medium ranges/the tongues, like the ones eter space one is interested. These calculations usually refer
shown in Fig. 4, are wider for threefold and sevenfold sym-to systems with periodic boundary conditions. We have stud-
metries. In the experiments the five-fold patterns are exied different Turing systems in confined regidi28], where
tremely robust aiv=35 Hz provided that the fluid height is a richer variety of spatial patterns can be produced if one
exactly set ahy=2 mm. For slightly lower values threefold modifies the sources at the boundaries. However, the patterns
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FIG. 7. (a) Numerical calculation in the situation whér=0.9. Observe the chaotic structufb) Photograph of the experimental vessel
showing a chaotic pattern.

are not produced by interference of monomodes imposed bthe Faraday experiment in two cases: Either the dynamic
the boundary, but they are truly nonlinear. Patterns in conviscosity of the liquid is very largg3,10] or the size of the
fined Turing systems are affected by the shape of the boundaells is small compared to the size of the vessel. The fact that
aries mainly by orientating them and creating “crystallinein our model there is a dissipation mechanism different from
defects.” the viscosity term and that it allows one to make a connec-
The role of the shape of the boundary can be negligible irtion with reaction-diffusion systems allows one to assert that
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FIG. 8. (a) Amplitude of the central point in the meshA() as a function of time, when it is driven at=37 Hz andA=0.75.(b) Image
corresponding to iteration 5Qc) Power spectrum obtained by fast Fourier transforn{@jg The continuous line is obtained from iteration
20 to 560 and the dotted line is obtained from iteration 560 to 20f)0mage corresponding to iteration 1200.

the patterns observed are reflecting truly nonlinear behaviotinear coupling is cubic instead of the sin term and the non-
Binks and van de Watd®24] have found a series of increas- variational gradient square terms that produce rotating modes
ing rotational symmetry patterns using a liquid with very low in their flames are not present in our model.
viscosity and surface tension. They show that these patterns
are truly nonlinear and that the effects of the boundary are
small. In our case the cell size is small compared to the
vessel dimensions in almost all the cases. Therefore, we can In this paper we have analyzed the fascinating problem of
assert that at least here the boundary is not important. In théhe Faraday instability both experimentally and theoretically.
case of the large cells of Figs(& and 3a), a Fourier-Bessel We have found that for certain liquids, in which viscosity is
analysis shows that there are many frequencies of the typeery small and with peculiar physical properties such as a
2w/n that are parametrically enhanced and the onset of thhigh molecular weight and density, there exists an additional
instability behaves as a truly nonlinear bifurcation. dissipation mechanism that introduces an important nonlin-
Reaction-diffusion equations have been used to modetar term in the equations of motion. This mechanism pro-
symmetry-breaking patterns in other completely differentduces the stabilization of symmetric patterns. The model
systems; for example, Gunarataeeal. [25] have found pat- equation was solved numerically and the patterns produced
terns in cellular flames and used a set of diffusion equations/ere analyzed and compared with experimental images. The
that are strikingly similar to our Eq6) except that the non- agreement seems to be satisfactory to the point that some

VI. CONCLUSION
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experimental patterns were first predicted by the simulationgnissing. This shall be the matter of a future work.
and then found in the experiments.
It is remarkable that the model equation can be written as ACKNOWLEDGMENTS
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